

REVIEW ARTICLE

DIGITAL HEALTH TECHNOLOGIES AND TELEMEDICINE FOR STRENGTHENING PRIMARY HEALTHCARE SYSTEMS

Richard Owusu Nyarko* and Anubhav Dubey

Faculty of Health Sciences, Ghana Christian University College, Amrahaia - Accra Ghana.

Assistant Professor, Department of Pharmacology, Maharana Pratap College of Pharmacy, Kanpur-209217, Uttar Pradesh, India.

Article History

Received: 12 September 2025
Revised: 08 November 2025
Accepted: 12 December 2025
Published: 25 December 2025

Corresponding author

Dr. Richard Owusu Nyarko
Faculty of Health Sciences, Ghana
Christian University College, Amrahaia -
Accra Ghana.
Email- richardnyarko91@yahoo.com
<https://orcid.org/0009-0009-1778-7202>

ABSTRACT: The delivery of healthcare services is facilitated through the Primary Healthcare Systems (PHS) with regard to employment. However, the efficacy of PHS continues to be impeded by such challenges as: geographically-based inequitable access to healthcare services; inadequate workforce numbers/availability; emerging chronic disease burdens and, particularly within low- and middle-income countries, geographic inequities. Consequently, the rapid development of digital health technologies and telemedicine have emerged as an innovative method to address these barriers. The use of digital health tools including, electronic health records (EHRs), mobile health applications (mHealth Apps), wearable devices and teleconsultation platforms will provide timely access to care; enhance service continuity; and patient engagement. Telemedicine will enable remote diagnosis, monitoring and follow up; thus, decreasing costs associated with healthcare and improving health outcomes. This literature review represents a comprehensive analysis of the potential for digital health technologies and telemedicine to improve the functionality of Primary Healthcare Systems. In this context, it addresses the main uses, benefits, limitations and future outlook of the subject matter, as well as the potential that digital health technologies and telemedicine may provide for improved access, quality and sustainability of Primary Healthcare Service Delivery.

Keywords: Digital health, Telemedicine, Primary healthcare systems, Mobile health, Healthcare accessibility.

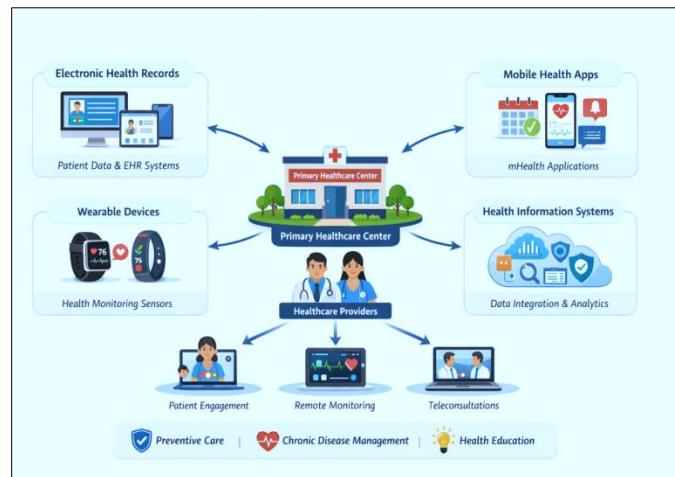
INTRODUCTION

Primary healthcare systems are the basis of a good and fair healthcare provision. They focus on the promotion of health, prevention of disease, its early detection and treatment on a basic level at the community level [1]. Primary healthcare systems across the world have had problems with workforce shortages, lack of infrastructure, rising chronic illnesses, and disparities in access especially in remote and rural areas despite their significance [2]. Digital health technologies and telemedicine have become the solutions that can transform such challenges [3]. These methods allow the process of providing healthcare services to be done more efficiently by providing improved access, continuation of care, and efficient use of resources through the integration of information and communication technologies in healthcare delivery [4]. Their contribution to the enhancement of primary healthcare systems has been getting more pronounced over the past few years [5].

2. Primary Healthcare Systems and Existing Challenges

Primary healthcare systems are the initial contact between the individuals and the healthcare system [6]. They have a major role in providing basic care for common ailments, maternal/child health services, vaccination and chronic illness treatment. The ability of these health workers to perform their duties effectively is limited due to a number of factors

including: broken up health data systems; a lack of efficient referrals between different levels of care; and inadequate training of other health professionals [7]. The barriers to effective performance of this group of health workers are greater in rural areas and among underserved populations; therefore, new and more innovative and scalable interventions will be needed to provide healthcare beyond the traditional facility based model [8].


3. Digital Health Technologies in Primary Healthcare

The application of digital technology is a means by which to provide, manage and monitor the delivery of healthcare via digital health [9], with examples being Electronic Health Records (EHRs), Mobile Health Applications (mHealth Apps) and Wearable Devices (WDs) as well as Integrated Health Information Systems (IHIS). The integration of these technologies enables the sharing of real time data and enhances the clinical decision making process for clinicians as well as engaging patients (Fig. 1) [10].

The integration of Digital Health Technologies (DHTs) into Primary Care will promote continuity of care and reduce the likelihood of Medical Errors; DHTs will also provide a platform for Evidence-Based Practice (Table 1) [11].

TABLE 1: MAJOR DIGITAL HEALTH TECHNOLOGIES AND THEIR ROLE IN PRIMARY HEALTHCARE

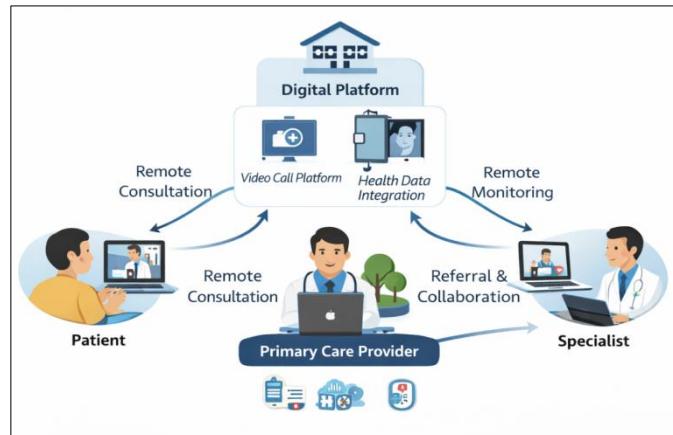

Digital Health Technology	Description	Role in Primary Healthcare
Electronic Health Records (EHRs)	Digital storage and management of patient medical information	Improved continuity and coordination of care, reduced medical errors, better clinical decision-making [12]
Mobile Health Applications (mHealth)	Smartphone-based applications for health monitoring and education	Health education, medication reminders, self-management of chronic diseases [13]
Wearable Health Devices	Sensors and wearable gadgets monitoring physiological parameters	Continuous monitoring of vital signs and early detection of health risks [14]
Health Information Systems (HIS)	Integrated digital platforms for healthcare data management	Disease surveillance, health planning, and policy decision support [15]
Telemedicine Platforms	Digital systems enabling remote consultation and diagnosis	Improved access to healthcare services, reduced travel and waiting time [16]
Remote Patient Monitoring Systems	Technologies for real-time monitoring of patients outside clinical settings	Effective chronic disease management and early intervention [17]
Clinical Decision Support Systems	Software tools assisting healthcare professionals in clinical decisions	Evidence-based diagnosis and treatment planning [18]
Digital Imaging and Diagnostic Tools	Technology-enabled diagnostic and imaging solutions	Faster and accurate diagnosis at the primary care level [19]
Patient Portals	Online platforms allowing patients to access health information	Enhanced patient engagement and improved communication with providers [20]
Cloud-Based Healthcare Solutions	Internet-based platforms for data storage and sharing	Secure data access, interoperability, and scalability of healthcare services [21]

FIG. 1: DIGITAL HEALTH ECOSYSTEM SUPPORTING PRIMARY HEALTHCARE DELIVERY [22]

4. Telemedicine in Primary Healthcare

Telemedicine is a technology which uses telecommunication technology for delivering health care services remotely. In particular telemedicine includes three types of technologies:

teleconsultation, telemonitoring and telediagnosis. The benefits of telemedicine are that it will allow primary health care providers to reach patients in remote or hard-to-reach areas and also will restrict access to health care to certain geographic locations [24]. The potential advantages of using telemedicine include the ability to reduce the burden on the health care system and improve the effectiveness of the primary health care systems by allowing remote consultations and follow up appointments (Fig. 2) [25].

FIG. 2: TELEMEDICINE WORKFLOW IN PRIMARY HEALTHCARE SYSTEMS [26]

5. Contribution of Digital Health and Telemedicine to Strengthening Primary Healthcare

The use of digital health technologies and telemedicine improves the primary health-care system by improving access to care, increasing the quality and efficiency of care [27]. Remote monitoring devices can provide early detection of complications, while digital platforms may support preventive and promotional activities for health [28].

In addition, these technologies can contribute to coordination between healthcare professionals, which will improve the continuity of care and the quality of the health outcomes [29].

6. Impact on Healthcare Accessibility and Quality

Telemedicine & E-Health are critical for expanding healthcare options for those in rural/underserved areas [30]. Telemedicine/E-Health can also provide timely access to care, reduce travel costs and travel time [31], and improve accuracy of both diagnoses and treatment plans with electronic decision support systems that lead to higher quality Primary Care [32].

7. Applications in Public Health and Preventive Care

DHTs have been utilized in large numbers in Public Health Programs for monitoring diseases, tracking immunizations, tracking maternal and Child health services, health education [33] and other related areas. In addition, mobile health tools will be able to facilitate the wide-spread dissemination of health literacy and Behavioral Preventive Health Practices (Table 2) [34].

TABLE 2: APPLICATIONS OF DIGITAL HEALTH AND TELEMEDICINE IN PUBLIC HEALTH

Public Health Area	Digital Application	Impact
Maternal and Child Health	Mobile reminders, teleconsultation, digital antenatal records	Improved antenatal care coverage and reduced maternal mortality [35]
Neonatal and Child Care	Telemonitoring and digital growth tracking	Early identification of growth and developmental issues [36]
Chronic Disease Management	Remote monitoring and tele-follow-up services	Better disease control and reduced hospital admissions [37]
Non-Communicable Diseases Prevention	Mobile health apps for lifestyle modification	Improved self-management and reduced risk factors [38]
Communicable Disease Control	Digital contact tracing and reporting systems	Timely intervention and outbreak containment [39]
Disease Surveillance	Integrated digital surveillance platforms	Early outbreak detection and real-time reporting [40]
Immunization Programs	Digital immunization registries and reminders	Increased vaccination coverage and reduced drop-out rates [41]
Mental Health Services	Telepsychiatry and mobile counseling platforms	Improved access to mental healthcare services [42]
Health Promotion	Mobile education platforms and SMS campaigns	Increased health awareness and preventive behaviors [43]
Emergency and Disaster Management	Telemedicine and digital triage systems	Rapid response and improved emergency care delivery [44]
Geriatric Care	Remote monitoring and virtual consultations	Improved continuity of care for elderly populations [45]
School and Adolescent Health	Digital health education tools	Enhanced health literacy among adolescents [46]

8. Challenges and Barriers to Implementation

Although digital health technologies have positive aspects, they also have a number of challenges such as low digital literacy, poor infrastructure, data privacy and security [47]. The regulatory and ethical aspects concerning patient confidentiality and interoperability have to be taken into consideration as well [48].

9. Future Perspectives

The future of the primary healthcare systems lies in the successful implementation of the advanced digital technologies including artificial intelligence, big data analytics, and predictive modeling [49-52]. The sustainable implementation will require policy support, capacity building and investment in digital infrastructure [53, 54].

CONCLUSION

The integration of telemedicine and digital health technology into contemporary primary healthcare systems has been identified as transformative and indispensable for the delivery of modern primary care. A large body of literature suggests that their full integration into primary care may resolve long-standing problems such as, limited access to healthcare services, insufficient workforce, an overwhelming burden of

chronic disease, and inequitable distribution of healthcare services, particularly among rural and underserved populations. Digital health solutions can improve, extend, and enhance the accessibility, responsiveness, and efficiency of primary healthcare services through; remote consultations, continuous patient monitoring on a 24/7 basis, and streamlined data management processes. The digital health solution of electronic health records, mobile health applications, wearable devices, and telemedicine platforms have enhanced continuity of care, early detection of disease, and increased engagement of patients. The technologies provide evidence based clinical decision making, prevention and promotion of health interventions, and optimize the utilization of healthcare resources. Ultimately, digital health and telemedicine will not only provide high quality care, but also, cost effective and patient centered care. Although the numerous benefits associated with the adoption of digital health solutions are well established, many impediments remain that are related to the lack of digital infrastructure, digital literacy, data privacy, interoperability, and regulatory frameworks. As a result of this, sustainable integration of digital health solutions is dependent upon the development of effective governance mechanisms, capacity building, and investments in digital infrastructure to alleviate the barriers created by inadequate supportive health policies. An additional issue associated with the successful implementation of digital health solutions is the need to protect patient data, ensure appropriate use of patient health data, and ensure fair access to digital health technologies. In summary, the successful inclusion of digital health technologies and telemedicine into primary healthcare systems, will greatly enable primary healthcare systems to achieve universal health coverage. The healthcare of the future must be patient centered, equitable in terms of care provisions, and digitally focused. Digital health and telemedicine could be a significant factor in transforming resilient, efficient, and sustainable primary healthcare systems across the globe with further technological innovation, policy advocacy, and stakeholder cooperation

AI Disclosure Statement

During the preparation of this manuscript, the author(s) used ChatGPT by OpenAI and Grammarly for language editing and grammar improvement. After its use, the author(s) thoroughly reviewed, verified, and revised all ai-assisted content to ensure accuracy and originality. The author(s) take full responsibility for the integrity and final content of the published article.

ACKNOWLEDGEMENT: Nil

CONFLICT OF INTEREST: Nil

REFERENCES:

1. Ajisegiri WS, Abimbola S, Tesema AG, Odusanya OO, Peiris D, Joshi R. The organisation of primary health care service delivery for non-communicable diseases in Nigeria: a case-study analysis. PLOS Global Public Health. 2022 Jul 1;2(7):e0000566.

2. Beaglehole R, Epping-Jordan J, Patel V, Chopra M, Ebrahim S, Kidd M, Haines A. Improving the prevention and management of chronic disease in low-income and middle-income countries: a priority for primary health care. *The Lancet*. 2008 Sep 13;372(9642):940-9.
3. Alami H, Gagnon MP, Fortin JP. Digital health and the challenge of health systems transformation. *Mhealth*. 2017 Aug 8;3:31.
4. Free C, Phillips G, Watson L, Galli L, Felix L, Edwards P, Patel V, Haines A. The effectiveness of mobile-health technologies to improve health care service delivery processes: a systematic review and meta-analysis. *PLoS medicine*. 2013 Jan 15;10(1):e1001363.
5. Starfield B, Shi L, Macinko J. Contribution of primary care to health systems and health. *The milbank quarterly*. 2005 Sep;83(3):457-502.
6. Frenk J. Reinventing primary health care: the need for systems integration. *The Lancet*. 2009 Jul 11;374(9684):170-3.
7. Black RE, Levin C, Walker N, Chou D, Liu L, Temmerman M. Reproductive, maternal, newborn, and child health: key messages from disease control priorities 3rd edition. *The Lancet*. 2016 Dec 3;388(10061):2811-24.
8. Partiwi N. Investigate the effectiveness, mechanisms, and scalability of community-based interventions designed to reduce health disparities. *Advances in Healthcare Research*. 2024 Feb 28;2(1):49-65.
9. World Health Organization. Classification of digital health interventions v1. 0: a shared language to describe the uses of digital technology for health. World Health Organization; 2018.
10. Dinh-Le C, Chuang R, Chokshi S, Mann D. Wearable health technology and electronic health record integration: scoping review and future directions. *JMIR mHealth and uHealth*. 2019 Sep 11;7(9):e12861.
11. Jimenez G, Matchar D, Koh CH, van der Kleij R, Chavannes NH, Car J. The role of health technologies in multicomponent primary care interventions: systematic review. *Journal of medical Internet research*. 2021 Jan 11;23(1):e20195.
12. Yadav P, Steinbach M, Kumar V, Simon G. Mining electronic health records (EHRs) A survey. *ACM Computing Surveys (CSUR)*. 2018 Jan 3;50(6):1-40.
13. Olla P, Shimskey C. mHealth taxonomy: a literature survey of mobile health applications. *Health and Technology*. 2015 Apr;4(4):299-308.
14. Lu L, Zhang J, Xie Y, Gao F, Xu S, Wu X, Ye Z. Wearable health devices in health care: narrative systematic review. *JMIR mHealth and uHealth*. 2020 Nov 9;8(11):e18907.
15. Lau F, Kuziemsky C, Price M, Gardner J. A review on systematic reviews of health information system studies. *Journal of the American Medical Informatics Association*. 2010 Nov 1;17(6):637-45.
16. Shanbehzadeh M, Kazemi-Arpanahi H, Kalkhajeh SG, Basati G. Systematic review on telemedicine platforms in lockdown periods: lessons learned from the COVID-19 pandemic. *Journal of education and health promotion*. 2021 Jun 30;10:211.
17. Boikanyo K, Zungeru AM, Sigweni B, Yahya A, Lebekwe C. Remote patient monitoring systems: Applications, architecture, and challenges. *Scientific African*. 2023 Jul 1;20:e01638.
18. Beeler PE, Bates DW, Hug BL. Clinical decision support systems. *Swiss medical weekly*. 2014 Dec 15;144(5152):w14073-.
19. Ludlow JB, Mol A. Digital imaging. White SC, Pharoah MJ. *Oral radiology: principles and interpretation*. 7th ed. St Louis: Elsevier. 2014 Jan 1:41-62.
20. Irizarry T, DeVito Dabbs A, Curran CR. Patient portals and patient engagement: a state of the science review. *Journal of medical Internet research*. 2015 Jun 23;17(6):e148.
21. Harnal S, Sharma G, Malik S, Kaur G, Simaiya S, Khurana S, Bagga D. Current and future trends of cloud-based solutions for healthcare. *Image Based Computing for Food and Health Analytics: Requirements, Challenges, Solutions and Practices: IBCFHA*. 2023 Mar 26:115-36.
22. Mwogosi A, Mambile C. Digital ecosystems for healthcare communication and collaboration: A scoping review. *Digital Health*. 2025 Sep;11:20552076251377933.
23. Preston J, Brown FW, Hartley B. Using telemedicine to improve health care in distant areas. *Psychiatric Services*. 1992 Jan;43(1):25-32.
24. Committee on Pediatric Workforce, Rimsza ME, Hotaling AJ, Keown ME, Marcin JP, Moskowitz WB, Sigrest TD, Simon HK. The use of telemedicine to address access and physician workforce shortages. *Pediatrics*. 2015 Jul 1;136(1):202-9.
25. Lee SG, Mun SK, Jha P, Levine BA, Ro DW. Telemedicine: Challenges and opportunities. *Journal of High Speed Networks*. 2000 Feb;9(1):15-30.
26. Tabaeian RA, Hajrahimi B, Khoshfetrat A. A systematic review of telemedicine systems use barriers: primary health care providers' perspective. *Journal of Science and Technology Policy Management*. 2024 Apr 18;15(3):610-35.
27. Dubey A, Verma AS. Effective remote healthcare and telemedicine approaches for improving digital healthcare systems. In *Digital Health Transformation with Blockchain and Artificial Intelligence* 2022 May 10 (pp. 273-297). CRC Press.
28. Végesna A, Tran M, Angelaccio M, Arcon S. Remote patient monitoring via non-invasive digital technologies: a systematic review. *Telemedicine and e-Health*. 2017 Jan 1;23(1):3-17.
29. Khatri R, Endalamaw A, Erku D, Wolka E, Nigatu F, Zewdie A, Assefa Y. Continuity and care coordination of primary health care: a scoping review. *BMC Health Services Research*. 2023 Jul 13;23(1):750.
30. Wang F. Measurement, optimization, and impact of health care accessibility: a methodological review. *Annals of the Association of American Geographers*. 2012 Sep 1;102(5):1104-12.
31. Caballo B, Dey S, Prabhu P, Seal B, Chu P, Kim L. The effects of socioeconomic status on the quality and accessibility of healthcare services. Across *The Spectrum of Socioeconomics: Issue IV*. 2021 May 7;236:1-6.
32. Tzenios N. The determinants of access to healthcare: a review of individual, structural, and systemic factors. *Journal of Humanities and Applied Science Research*. 2019 Dec 9;2(1):1-4.
33. Altwaijri SA, Alotaibi AM, ALahmadi FS, Alyamani AM. Preventive Medicine and Its Role in Enhancing Public Health: the Critical Importance of Routine Health Screenings. *International Journal of Health Sciences*. 1(S1):339-60.
34. Alabbas AY, Al Balabel IA, Al Hayek NY, Albalabel KJ, Al Alhareth HM, Alyami WA, Al Thayrayan AH, Aldhayriyan IM, Saleh SM, Alhazouber HA, Albalabel11 FS. Innovative Approaches to Strengthening Preventative Care in

Contemporary Healthcare: A Systematic Review. *Journal of Ecohumanism*. 2024;3(7):589-96.

35. Lawn JE, Tinker A, Munjanja SP, Cousens S. Where is maternal and child health now?. *The Lancet*. 2006 Oct 28;368(9546):1474-7.
36. Rothstein JD, Jennings L, Moorthy A, Yang F, Gee L, Romano K, Hutchful D, Labrique AB, LeFevre AE. Qualitative assessment of the feasibility, usability, and acceptability of a mobile client data app for community-based maternal, neonatal, and child care in rural Ghana. *International journal of telemedicine and applications*. 2016;2016(1):2515420.
37. Wagner EH. Chronic disease management: what will it take to improve care for chronic illness?. *Effective clinical practice*. 1998 Aug;1(1).
38. Budreviciute A, Damiati S, Sabir DK, Onder K, Schuller-Goetzburg P, Plakys G, Katileviciute A, Khoja S, Kodzius R. Management and prevention strategies for non-communicable diseases (NCDs) and their risk factors. *Frontiers in public health*. 2020 Nov 26;8:574111.
39. Shigayeva A, Coker RJ. Communicable disease control programmes and health systems: an analytical approach to sustainability. *Health Policy and Planning*. 2015 Apr 1;30(3):368-85.
40. Robertson C, Nelson TA, MacNab YC, Lawson AB. Review of methods for space-time disease surveillance. *Spatial and spatio-temporal epidemiology*. 2010 Jul 1;1(2-3):105-16.
41. Roper L, Hall MA, Cohn A. Overview of the United States' immunization program. *The Journal of infectious diseases*. 2021 Oct 1;224(Supplement_4):S443-51.
42. Abuse S. Mental health services administration. Results from the. 2013 Jan 10;2(013):55-68.
43. Kumar V, Mittal S. Mobile marketing campaigns: practices, challenges and opportunities. *International Journal of Business Innovation and Research*. 2020;21(4):523-39.
44. Kapucu N, Garayev V. Collaborative decision-making in emergency and disaster management. *International Journal of Public Administration*. 2011 May 1;34(6):366-75.
45. Counsell SR, Callahan CM, Clark DO, Tu W, Buttar AB, Stump TE, Ricketts GD. Geriatric care management for low-income seniors: a randomized controlled trial. *Jama*. 2007 Dec 12;298(22):2623-33.
46. Shackleton N, Jamal F, Viner RM, Dickson K, Patton G, Bonell C. School-based interventions going beyond health education to promote adolescent health: systematic review of reviews. *Journal of Adolescent Health*. 2016 Apr 1;58(4):382-96.
47. Kemp E, Trigg J, Beatty L, Christensen C, Dhillon HM, Maeder A, Williams PA, Koczwara B. Health literacy, digital health literacy and the implementation of digital health technologies in cancer care: the need for a strategic approach. *Health Promotion Journal of Australia*. 2021 Feb;32:104-14.
48. Dunn P, Hazzard E. Technology approaches to digital health literacy. *International journal of cardiology*. 2019 Oct 15;293:294-6.
49. Paramasivan A. Big Data to Better Care: The Role of AI in Predictive Modelling for Healthcare Management. *International Journal of Innovative Research and Creative Technology*. 2020;6(3):1-9.
50. Khan ZF, Alotaibi SR. Applications of artificial intelligence and big data analytics in m-health: A healthcare system perspective. *Journal of healthcare engineering*. 2020;2020(1):8894694.
51. Munagandla VB, Dandyala SS, Vadde BC. Big Data Analytics: Transforming the Healthcare Industry. *International Journal of Advanced Engineering Technologies and Innovations*. 2019;1(2):294-313.
52. Dehnavieh R, Inayatullah S, Yousefi F, Nadali M. Artificial Intelligence (AI) and the future of Iran's Primary Health Care (PHC) system. *BMC Primary Care*. 2025 Mar 21;26(1):75.
53. Nurdin NH, Purna ZA. Unleashing the power of capacity building: Transforming governance and policy implementation in the digital era. *KnE Social Sciences*. 2023 Oct 2:274-88.
54. Yoon J. Korean digital government infrastructure building and implementation: Capacity dimensions. *Bringing Government into the 21st Century: The Korean Digital Governance Experience*. 2016 Jun 28:41-59.

How to cite this article:

Nyarko RO and Dubey A. Digital health technologies and telemedicine for strengthening primary healthcare systems. P-Edu International Journal of Multidisciplinary Studies 2025; 1(1): 32-36.